1,062 research outputs found

    Optical separation of mechanical strain from charge doping in graphene

    Get PDF
    Because of its superior stretchability, graphene exhibits rich structural deformation behaviours and its strain engineering has proven useful in modifying its electronic and magnetic properties. Despite the strain-sensitivity of the Raman G and 2D modes, the optical characterization of the native strain in graphene on silica substrates has been hampered by excess charges interfering with both modes. Here we show that the effects of strain and charges can be optically separated from each other by correlation analysis of the two modes, enabling simple quantification of both. Graphene with in-plane strain randomly occurring between -0.2% and 0.4% undergoes modest compression (-0.3%) and significant hole doping on thermal treatments. This study suggests that substrate-mediated mechanical strain is a ubiquitous phenomenon in two-dimensional materials. The proposed analysis will be of great use in characterizing graphene-based materials and devices.open11302307Nsciescopu

    Effects of serum proteins on corrosion behavior of ISO 5832–9 alloy modified by titania coatings

    Get PDF
    Stainless steel ISO 5832–9 type is often used to perform implants which operate in protein-containing physiological environments. The interaction between proteins and surface of the implant may affect its corrosive properties. The aim of this work was to study the effect of selected serum proteins (albumin and γ-globulins) on the corrosion of ISO 5832–9 alloy (trade name M30NW) which surface was modified by titania coatings. These coatings were obtained by sol– gel method and heated at temperatures of 400 and 800 °C. To evaluate the effect of the proteins, the corrosion tests were performed with and without the addition of proteins with concentration of 1 g L−1 to the physiological saline solution (0.9 % NaCl, pH 7.4) at 37 °C. The tests were carried out within 7 days. The following electrochemical methods were used: open circuit potential, linear polarization resistance, and electrochemical impedance spectroscopy. In addition, surface analysis by optical microscopy and X-ray photoelectron spectroscopy (XPS) method was done at the end of weekly corrosion tests. The results of corrosion tests showed that M30NW alloy both uncoated and modified with titania coatings exhibits a very good corrosion resistance during weekly exposition to corrosion medium. The best corrosion resistance in 0.9 % NaCl solution is shown by alloy samples modified by titania coating annealed at 400 °C. The serumproteins have no significant effect onto corrosion of investigated biomedical steel. The XPS results confirmed the presence of proteins on the alloy surface after 7 days of immersion in proteincontaining solutions.The investigations were supported by the National Science Centre project No. N N507 501339. The authors gratefully acknowledge Dr. Janusz Sobczak and Dr. hab. Wojciech Lisowski from Institute of Physical Chemistry of PAS for XPS surface analyses

    Moxifloxacin: Clinically compatible contrast agent for multiphoton imaging

    Get PDF
    Multiphoton microscopy (MPM) is a nonlinear fluorescence microscopic technique widely used for cellular imaging of thick tissues and live animals in biological studies. However, MPM application to human tissues is limited by weak endogenous fluorescence in tissue and cytotoxicity of exogenous probes. Herein, we describe the applications of moxifloxacin, an FDA-approved antibiotic, as a cell-labeling agent for MPM. Moxifloxacin has bright intrinsic multiphoton fluorescence, good tissue penetration and high intracellular concentration. MPM with moxifloxacin was demonstrated in various cell lines, and animal tissues of cornea, skin, small intestine and bladder. Clinical application is promising since imaging based on moxifloxacin labeling could be 10 times faster than imaging based on endogenous fluorescence.1152sciescopu

    Robot-assisted laparoscopic surgery of the infrarenal aorta: The early learning curve

    Get PDF
    Background Recently introduced robot-assisted laparoscopic surgery (RALS) facilitates endoscopic surgical manipulation and thereby reduces the learning curve for (advanced) laparoscopic surgery. We present our learning curve with RALS for aortobifemoral bypass grafting as a treatment for aortoiliac occlusive disease. Methods Between February 2002 and May 2005, 17 patients were treated in our institution with robot-assisted laparoscopic aorto-bifemoral bypasses. Dissection was performed laparoscopically and the robot was used to make the aortic anastomosis. Operative time, clamping time, and anastomosis time, as well as blood loss and hospital stay, were used as parameters to evaluate the results and to compare the first eight (group 1) and the last nine patients (group2). Results Total median operative, clamping, and anastomosis times were 365 min (range: 225–589 min), 86 min (range: 25–205 min), and 41 min (range: 22–110 min), respectively. Total median blood loss was 1,000 ml (range: 100–5,800 ml). Median hospital stay was 4 days (range: 3–57 days). In this series 16/18 anastomoses were completed with the use of the robotic system. Three patients were converted (two in group 1, one in group 2), and one patient died postoperatively (group 1). Median clamping and anastomosis times were significantly different between groups 1 and 2 (111 min [range: 85–205 min] versus 57.5 min [range: 25–130 min], p < 0.01 and 74 min [range: 40–110 min] versus 36 min [range: 22–69 min], p < 0.01, respectively) Total operative time, blood loss, and hospital stay showed no significant difference between groups 1 and 2. Conclusions Robot-assisted aortic anastomosis was shown to have a steep learning curve with considerable reduction of clamping and anastomosis times. However, due to a longer learning curve for laparoscopic dissection of the abdominal aorta, operation times were not significantly shortened. Even with robotic assistance, laparoscopic aortoiliac surgery remains a complex procedure

    Microparticle-mediated transfer of the viral receptors CAR and CD46, and the CFTR channel in a CHO cell model confers new functions to target cells

    Get PDF
    Cell microparticles (MPs) released in the extracellular milieu can embark plasma membrane and intracellular components which are specific of their cellular origin, and transfer them to target cells. The MP-mediated, cell-to-cell transfer of three human membrane glycoproteins of different degrees of complexity was investigated in the present study, using a CHO cell model system. We first tested the delivery of CAR and CD46, two monospanins which act as adenovirus receptors, to target CHO cells. CHO cells lack CAR and CD46, high affinity receptors for human adenovirus serotype 5 (HAdV5), and serotype 35 (HAdV35), respectively. We found that MPs derived from CHO cells (MP-donor cells) constitutively expressing CAR (MP-CAR) or CD46 (MP-CD46) were able to transfer CAR and CD46 to target CHO cells, and conferred selective permissiveness to HAdV5 and HAdV35. In addition, target CHO cells incubated with MP-CD46 acquired the CD46-associated function in complement regulation. We also explored the MP-mediated delivery of a dodecaspanin membrane glycoprotein, the CFTR to target CHO cells. CFTR functions as a chloride channel in human cells and is implicated in the genetic disease cystic fibrosis. Target CHO cells incubated with MPs produced by CHO cells constitutively expressing GFP-tagged CFTR (MP-GFP-CFTR) were found to gain a new cellular function, the chloride channel activity associated to CFTR. Time-course analysis of the appearance of GFP-CFTR in target cells suggested that MPs could achieve the delivery of CFTR to target cells via two mechanisms: the transfer of mature, membrane-inserted CFTR glycoprotein, and the transfer of CFTR-encoding mRNA. These results confirmed that cell-derived MPs represent a new class of promising therapeutic vehicles for the delivery of bioactive macromolecules, proteins or mRNAs, the latter exerting the desired therapeutic effect in target cells via de novo synthesis of their encoded proteins

    Spatial Functional Characteristics of East Asian Patients with Occult Macular Dystrophy (Miyake disease); EAOMD Report No.2

    Get PDF
    PURPOSE: To describe the functional phenotypic features of East Asian patients with RP1L1-associated occult macular dystrophy (i.e., Miyake disease). DESIGN: An international multi-center retrospective cohort study. METHODS: Twenty-eight participants (53 eyes) with Miyake disease were enrolled at three centres: in Japan, China, and Korea. Ophthalmological examinations including spectral-domain optic coherence tomography (SD-OCT) and multifocal electroretinogram (mfERG) were performed. Patients were classified into three functional groups based on mfERG: Group 1, paracentral dysfunction with relatively preserved central/peripheral function; Group 2, homogeneous central dysfunction with preserved peripheral function; and Group 3, widespread dysfunction over the recorded area. Three functional phenotypes were compared in clinical parameters and SD-OCT morphological classification (severe phenotype, blurred/flat ellipsoid zone and absence of the interdigitation zone; mild phenotype, preserved ellipsoid zone). RESULTS: There were eight eyes in Group 1, 40 eyes in Group 2, and five eyes in Group 3. The patients in Group 1 showed significantly later onset (P=.005) and shorter disease duration (P=.002), compared with those in Group 2. All eight eyes in Group 1 showed the mild morphological phenotype, while 43/45 eyes in Groups 2 and 3 presented the severe phenotype, which identified a significant association between the functional grouping and the morphological classification (P<.001). CONCLUSIONS: A spectrum of functional phenotypes of Miyake disease was first documented with identifying three functional subtypes. Patients with paracentral dysfunction had the mildest phenotype, and those with homogeneous central or widespread dysfunction showed overlapping clinical findings with severe photoreceptor changes, suggesting various extents of visual impairment

    Carcinoma developing in ectopic pancreatic tissue in the stomach: a case report

    Get PDF
    The development of pancreatic tissue outside the confines of the main gland, without anatomic or vascular connections between them, is a congenital abnormality referred to as heterotopic pancreas. A heterotopic pancreas in the gastrointestinal tract is usually discovered incidentally and the risk of its malignant transformation is extremely low. In this study, we describe the first case of endoepithelial carcinoma arising in a gastric heterotopic pancreas of a 56-year old woman in Greece. She presented with epigastric pain, periodic nausea and vomiting. Esophagogastroduodenoscopy revealed an ulcerated lesion in the gastric antrum, biopsies of which showed intense epithelial dysplasia with incipient malignant degeneration. The pathology report of the distal gastrectomy specimen demonstrated a 2 cm in diameter ulcerative mass in the gastric antrum. Microscopically, an endoepithelial (in situ) carcinoma of the gastric antrum was determined, which in places turned into an microinvasive endomucosal adenocarcinoma. It also incidentally demonstrated heterotopic pancreatic ducts, detected within the mucosa to the muscularis propria of the same region of the stomach, in which an endoepithelial (in situ) carcinoma was evolving. The follow-up course was uneventful 6 months postoperatively

    Aggregated impact of allowance allocation and power dispatching on emission reduction

    Get PDF
    Climate change has become one of the most important issues for the sustainable development of social well-being. China has made great efforts in reducing CO2 emissions and promoting clean energy. Pilot Emission Trading Systems (ETSs) have been launched in two provinces and five cities in China, and a national level ETS will be implemented in the third quarter of 2017, with preparations for China’s national ETS now well under way. In the meantime, a new round of China’s electric power system reform has entered the implementation stage. Policy variables from both electricity and emission markets will impose potential risks on the operation of generation companies (GenCos). Under this situation, by selecting key variables in each domain, this paper analyzes the combined effects of different allowance allocation methods and power dispatching models on power system emission. Key parameters are set based on a provincial power system in China, and the case studies are conducted based on dynamic simulation platform for macro-energy systems (DSMES) software developed by the authors. The selected power dispatching models include planned dispatch, energy saving power generation dispatch and economic dispatch. The selected initial allowance allocation methods in the emission market include the grandfathering method based on historical emissions and the benchmarking method based on actual output. Based on the simulation results and discussions, several policy implications are highlighted to help to design an effective emission market in China
    corecore